

NEW MONOTERPENE DIOLS FROM ESSENTIAL OIL OF *FERULA JAESCHKEANA*

S. N. GARG and S. K. AGARWAL

Central Institute of Medicinal and Aromatic Plants, Post Bag No. 1, RSM Nagar P.O., Lucknow 226016, India

(Received 30 June 1987)

Key word Index—*Ferula jaeschkeana*; Umbelliferae; *p*-menthene diols.

Abstract—The steam distilled oil of *F. jaeschkeana* rhizomes afforded three new *p*-menthene diols.

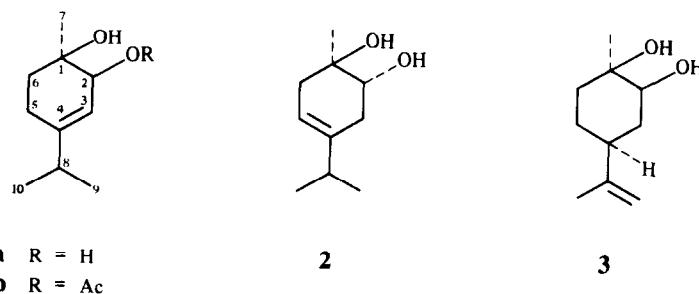
INTRODUCTION

Despite numerous investigations on the constituents of *F. jaeschkeana* oil [1-4] only a few monoterpenoids have been isolated and identified. In the present communication we report the characterisation of three new monoterpenoids, *p*-menth-3-ene-1,2-diol (**1a**), *p*-menth-4-ene-1,2-diol (**2**) and *p*-menth-8-ene-1,2-diol (**3**) from the essential oil of *F. jaeschkeana* rhizomes.

RESULTS AND DISCUSSION

On repeated column chromatography over silica gel, the essential oil of *F. jaeschkeana* yielded three compounds. Compound **1a** was obtained as a viscous mass and analysed for the molecular formula $C_{10}H_{18}O_2$. It did not show the molecular ion in the mass spectrum but showed a fragment ion at m/z 152 [$M - H_2O$]⁺. Its IR spectrum exhibited a strong absorption at 3350 cm^{-1} for hydroxyls and preliminary investigations of its physical data showed the presence of a double bond indicative of one ring and one double bond in the molecule.

The presence of one tertiary, one secondary hydroxy groups and one trisubstituted double bond was established by the signals at δ 3.92 *d* (3 Hz), 5.25 *d* (3 Hz) in its ¹H NMR spectrum and carbon signals at δ 72.20 *s*, 74.40 *d*, 145.80 *s* and 121.00 *d* in its ¹³C NMR spectrum. The nature of the secondary hydroxyl group was further confirmed by the formation of its monoacetate (**1b**). The C-7 *Me* at δ 1.20 *s* indicated the presence of a tertiary hydroxy group at C-1 and the other secondary hydroxy group was fixed at C-2 and the double bond at C-3 on the basis of couplings and ¹H NMR decouplings. If irradiation was done at the olefinic proton at δ 5.25 *d*, the oxymethylene signal at δ 3.92 *d* changed into a singlet and vice versa. Irradiation at C-8 methine at δ 1.95 *sept* collapsed the secondary methyls into singlet at δ 0.98 and sharpened the olefinic doublet ($J = 3$ Hz) at δ 5.20. Further the mass spectrum fragments arose due to a retro-Diels-Alder fragmentation which was in agreement with the proposed structure (**1a**).


Stereochemistry of *Me* group at C-1 has been fixed axial since C₅ is upfield (δ 24.00) due to 1,5-diaxial interaction,

γ -effect compared with the carbon chemical shifts of closely related compounds [5]. The hydroxyl at C-2 was deduced as β -axial due to the *J* value of 3 Hz between oxymethylene and olefinic proton, and the appearance of acetoxy group at δ 2.13 (**1b**) in its ¹H NMR spectrum [6]. *cis*-configuration of both vicinal hydroxyls was also corroborated by formation of its acetonide. On the basis of the above findings structure **1a** was assigned for this compound.

Compound **2**, a viscous mass analysed for molecular formula $C_{10}H_{18}O_2$ (M^+ , 170). Its IR spectrum showed absorption at 3380 cm^{-1} for hydroxy groups. The presence of one tertiary and one secondary hydroxy groups, one trisubstituted double bond, an isopropyl group and a quaternary methyl at oxygen bearing carbon were confirmed by comparing ¹H NMR and ¹³C NMR spectra of **2** with compound **1a**. In its mass spectrum fragments arising due to retro-Diels-Alder fragmentation were also present.

Position of secondary hydroxyl group was located at C-2 as α -equatorial since its oxymethylene appeared as a broad singlet at δ 3.70 ($W_{1/2} = 8$ Hz) and the double bond at Δ^4 by homonuclear proton decoupling experiments in its ¹H NMR spectrum. It also did not form its acetonide. In its ¹³C NMR spectrum, C-3 methylene carbon appeared upfield at δ 25.0 (*t*) due to 1,3-diaxial and γ -effects. Thus, it was characterized as **2**.

Compound **3**, a crystalline substance, mp 72° was analysed for molecular formula $C_{10}H_{18}O_2$ (M^+ , 170). Its IR spectrum showed an absorption band at 3350 cm^{-1} for hydroxy groups. ¹³C NMR spectrum of **3** indicated the presence of an exocyclic double bond, a secondary and a tertiary hydroxy bearing carbons besides two methyl and three methylene carbons. Its ¹H NMR spectrum also showed the terminal methylene protons as a broad singlet at δ 4.70. Its tertiary hydroxy group was located at C-1, since the C-7 methyl appeared at δ 1.25, and the vinylic methyl at δ 1.70, which established the position of the terminal methylene at C-8 in structure **3**. The signal for this methyl was also sharpened when the exomethylene was irradiated. The position of secondary hydroxyl group was fixed at C-2 as β axial by ¹H NMR decouplings and comparing its ¹H NMR data with those of compounds **1a**, **2** and the mp, optical rotation of a synthetically prepared compound [7]. On the basis of the data now available structure **3** was suggested for this compound.

EXPERIMENTAL

Mps: uncorr. NMR: CDCl_3 , TMS as int. standard. CC and TLC were performed on silica gel.

Extraction and identification. *F. jaeschkeana* rhizomes (10 kg, fresh) collected from Gulmarg, Kashmir, was cut into small pieces and steam-distilled. It yielded a pale yellow oil (1%, 100 ml) which was chromatographed over a column of activated neutral Al_2O_3 (2 kg, Grade 1) and eluted with petrol, and petrol-EtOAc (99:1), (97:3), (95:5) and (9:1). 10 fractions of each were collected and fractions 31–40 having same TLC pattern were mixed and concd. It (20 g) was rechromatographed over Si gel column (400 g) and eluted with CHCl_3 and $\text{CHCl}_3\text{-MeOH}$ (1–5%) mixtures, respectively, followed by prep. TLC. It resulted in the isolation of three compounds, *p*-menth-3-ene-1,2-diol (**1a**), R_f 0.18; *p*-menth-4-ene-1,2-diol (**2**) R_f 0.29, *p*-menth-8-ene 1,2 diol (**3**), R_f 0.25 solvent system $\text{CH}_2\text{Cl}_2\text{-MeOH}$ (95:5). These gave violet, violet and red colour spots when TLC plates were sprayed with a 1% soln of vanillin- H_2SO_4 and heated for 10 min at 110°.

Compound 1a, a viscous mass, molecular formula $\text{C}_{10}\text{H}_{18}\text{O}_2$, $[\alpha]_D^{25} -2.5^\circ$ (CHCl_3 ; c2.0); IR $\nu_{\text{max}}^{\text{neat}} \text{cm}^{-1}$: 3350, 2920, 2850, 1640, 1370, 1100, 970, 920, 870 and 840. ^1H NMR: δ 0.98 (6H, d, $J = 7$ Hz), 1.20 (3H, s), 1.95 (1H, sept $J = 7$ Hz), 3.92 (1H, d, $J = 3$ Hz), 5.25 (1H, d, $J = 3$ Hz); ^{13}C NMR: δ 145.80 s, 121.00 d, 74.40 d, 72.20 s, 34.10 d, 33.80 t, 24.00 t, 21.00 q, 20.80 q, 20.00 q; MS m/z (rel. int.): 152 [$\text{M} - \text{H}_2\text{O}$]⁺ (5), 137 (42), 119 (3), 109 (11), 108 (13), 93 (4), 82 (18), 71 (65), 67 (38), 55 (22), 43 (100). (Found: C, 70.59; H, 10.72, $\text{C}_{10}\text{H}_{18}\text{O}_2$, requires C, 70.59; H, 10.58%).

Monoacetate 1b. Acetylation of **1a** (15 mg) in $\text{C}_5\text{H}_5\text{N}$ and Ac_2O (0.5 ml each) at room temp. and after usual work-up yielded a viscous mass, R_f 0.32 ($\text{CH}_2\text{Cl}_2\text{-MeOH}$ 19:1); ^1H NMR: δ 0.98 (6H, d, $J = 7$ Hz), 1.22 (3H, s), 2.13 (3H, s), 4.85 (1H, d, $J = 3$ Hz), 5.30 (1H, d, $J = 3$ Hz).

Acetonide. A mixture of compound **1a** (10 mg) in dry (Me_2CO (10 ml) and conc. H_2SO_4 (0.05 ml) was shaken at room temp. for 2 hr and after usual work-up yielded a viscous mass, R_f 0.60 $\text{CHCl}_3\text{-MeOH}$ (95:5). IR $\nu_{\text{max}}^{\text{neat}} \text{cm}^{-1}$: 2995, 1640, 1380, 1218 and

1035. ^1H NMR: δ 0.97 (6H, d, $J = 7$ Hz), 1.15 (3H, s), 1.32 (6H, s).

Compound 2: A viscous mass, $\text{C}_{10}\text{H}_{18}\text{O}_2$ (M^+ , 170); $[\alpha]_D^{25} +4.8^\circ$ (MeOH, C 4.0); IR $\nu_{\text{max}}^{\text{neat}} \text{cm}^{-1}$: 3380, 2950, 2880, 1650, 1440, 1370, 1100, 980 and 860; ^1H NMR δ 0.95 (6H, d, $J = 7$ Hz), 1.10 (3H, s), 1.95 (1H, sept, $J = 7$ Hz), 3.70 (1H, br s, $W_{1/2} = 8$ Hz); ^{13}C NMR: δ 148.40 s, 120.50 d, 72.20 d, 70.90 s, 35.20 d, 33.00 t, 25.00 t, 25.00 q, 21.80 q, 21.80 q, MS m/z (rel. int. %): 170 (M^+ , 2), 152 (3.5), 135 (4), 119 (8), 112 (48), 97 (60), 83 (45), 69 (27), 67 (15), 55 (32), 43 (100).

Compound 3. Colourless needles (MeOH), mp 74°, $\text{C}_{10}\text{H}_{18}\text{O}_2$ (M^+ , 170) $[\alpha]_D^{25} +29^\circ$ (MeOH, c2.0); IR $\nu_{\text{max}}^{\text{neat}} \text{cm}^{-1}$: 3300, 2950, 2900, 1645, 1440, 1380, 1190, 1170, 1130, 1040, 970 and 900. ^1H NMR: δ 1.25 (3H, s), 1.70 (3H, s), 3.60 (1H, t, $J = 3.0$ Hz), 4.70 (2H, br s); ^{13}C NMR: δ 148.40 (s), 109.50 (t), 74.00 (d), 66.50 (s), 38.00 (d), 34.00 (t), 34.50 (t), 27.00 (t), 26.20 (q), 21.20 (q); MS m/z (rel. int. %): 170 (5), 152 (27), 137 (12.6), 126 (10.8), 111 (15.8), 109 (22.3), 108 (33), 100 (6.7), 93 (20), 71 (100), 67 (40), 43 (70).

Acknowledgements—The authors are grateful to Dr Akhtar Husain, Director, and Head, Phytochemistry, for providing facilities and encouragement throughout the work.

REFERENCES

1. (1956) *The Wealth of India* Vol. 4, p. 23. CSIR, New Delhi.
2. Vashist, V. N., Nath, Y., Nazir, B. N. and Handa, K. L. (1962) *Ind. Oil Soap J.*, **27**, 229.
3. Chaudhuri, S. S. and Handa, K. L. (1959) *Indian J. Pharm.* **21**, 39.
4. Kapahi, B. K., Thappa, R. K., Agarwal, S. G. and Sarin, Y. K. (1985) *Pafai J.* **7**, 23.
5. Wehrli, F. W. (1979) in *Progress in the Chemistry of Organic Natural Products* (Herz, W., Grisebach, H., and Kirby, C. W. eds) Vol. 36, pp. 26–27. Springer, New York.
6. Sakata, H. (1967) *Tetrahedron Letters* 3357.
7. Royal, E. E. and Leffingwell, J. C. (1966) *J. Org. Chem.* **31**, 1937.